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Abstract: For partial spline models with a monotone nonlinear component, a class
of monotone estimating equations is proposed for estimating the slope parameters
of the vector of covariables Z of the linear component, while adjusting for the cor-
responding ranks of the vector of covariables X of the nonlinear component. This
approach avoids the technical complications due to the smoothing of estimators for
the nonlinear component with monotonicity, as well as the curse of dimensionality.
Also, computationally, our inferences do not involve the unknown error probability
density function. As an R-estimator taking into account the rank correlation be-
tween Y and X, the asymptotic relative efficiency with respect to other estimators
ignoring X is proportional to the Spearman correlation coefficient between them.
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1. Introduction

In this paper we consider regression models consisting of linear as well as
non-linear components. These so-called partial spline models, or partly linear
models, can be found in economics and biometrics (Engle, Granger, Rice and
Weiss (1986), Gray (1994), Sleeper and Harrington (1990)), and have been cov-
ered extensively in statistics literature (see, e.g., Chen (1988), (1995), Heckman
(1986), Shiller (1984), Speckman (1988)). Most often the primary interest lies in
making inferences of the linear coefficients with adjustments, rather than make
the strong assumption of linear associations between the response and remaining
covariable(s). For example, in a randomized clinical trial for a comparison of
two treatments, the experimenter may be unsure of the effects of age on the re-
sponse, but may want to estimate the treatment differences which are believed to
be constant and independent of age (Heckman (1986)). In the same setting, the
research interest is focused on the regression coefficient(s) of the linear term(s).

Consider a partial spline model of the form

Yi = γT Zi + m(Xi) + εi, i = 1, . . . , n, (1)

where Z is a d-dimensional vector of covariables, m(·) is an unknown component-
wise monotone (possibly nonlinear) function of a p-dimensional vector of covari-
ables X, and ε is the residual with an unknown distribution function F (·).
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Given model (1) and γ, the parameter of interest, the common approach is to
estimate γ and the function m(·) or its finite approximation simultaneously, using
the spline method with a penalty function for over-fitting (see, e.g., Wahba (1990),
Chen (1988)). These procedures, however, seem complicated and unstable due to
the sensitivity of the smoothing technique, as well as the curse of dimensionality.
Further technical difficulty can be incurred with monotonicity assumed in each
component of m(X), such as the age effect in two-sample treatments.

In this paper, we note that rank transformations are invariant under mono-
tone transformations and regress the ranks of Yi − γT Zi on the component-wise
ranks of X to form estimating equations for γ. By doing so we avoid the non-
parametric estimation of m(X). For expository purposes we first derive the
estimating equation when Z and X are stochastically independent. It is noted
that, when Z are group indicators and γ = 0, as a test statistic this is the rank
analysis of covariance (Quade (1967)). The linear component part of the corre-
sponding estimating equation reduces asymptotically to the statistics proposed
by Sen (1968) for linear models, and Fygenson and Ritov (1994) for censored
regression. We then make some adjustment when Z and X are dependent.

The paper is organized as follows. First, we apply the above approach to
the two-sample case in Section 2, followed by a one-sample regression case in
Section 3. For model (1) with right censored data we adopt Gehen’s (1965)
generalized Wilcoxon score for the response Y in Section 4. The results from
previous sections are generalized to the case where Z and X are dependent in
Section 5. Small simulation studies were conducted to compare with monotone
estimating equations (Fygenson and Ritov (1994)) and other spline methods,
and they are discussed in Section 6. Concluding remarks are made in the final
section.

2. Treatment Effect in the Two-Sample Case

Consider a set of two-sample data consisting of vectors (Yi, Zi,Xi), where
Y is the response and Xi = (Xi,1, . . . ,Xi,p)T is the p-dimensional vector of the
coveriables. Here Zi = 0 labels the control group of size n0, Zi = 1 the treatment
group of size n1, n = n1 + n0. Model (1) imples that F (Y − γ|Z = 1,X) =
F (Y |Z = 0,X). And we are interested in estimating the treatment effect γ.
By ignoring m(X), or the vector of the covariables X, one finds the classical
two-sample location model. In this setting the Hodges-Lemann estimator is a
popular estimator for γ.

Let Ri(γ) = 1/2
∑n

j=1 sgn[(Yi − γZi) − (Yj − γZj)] be the (mean adjusted)
rank of Yi − γZi, and Ci,l = 1

2

∑n
j=1 sgn(Xi,l − Xj,l) be the rank of Xi,l in the

pooled sample. Then the resulting residual scores

Di(γ) = Ri(γ) −
p∑

l=1

λlCi,l (2)
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are interchangeable, where Ci = (Ci,1, . . . , Ci, p)T , i = 1, . . . , n, and standard
U-statistic theory applies. Heuristically, λ = (λ1, . . . , λp)T can be taken as the
vector of the regression coefficients for Ri on Ci. A test criterion, in the spirit of
the Wilcoxon rank-sum statistic, is the sum of the residual scores of the treated
observations. For a given λ, the null hypothesis should be rejected for large
values of the test statistic

Q(γ;λ) =
n∑

i=1

Zi(Ri(γ) −
∑

l

λlCi,l)/n1n0. (3)

The statistic Q(γ;λ) is centered at zero under the null hypothesis H0 : γ = γ0.
In addition, the larger the value of γ, the smaller the statistic Q, and vice versa.
Therefore the test statistic can be used as a monotone estimating equation. The
proposed statistic Q(γ;λ) is not continuous in γ, so one may not be able to
solve Q(γ;λ) = 0. The generalized solution will be that γ for which a slight
perturbation of any of its components changes the sign of Q.

Given λ, let γ̂
(L)
λ = sup{γ : Q(γ;λ) > 0}, and γ̂

(U)
λ = inf{γ : Q(γ;λ < 0}; we

take

γ̂λ =
γ̂

(U)
λ + γ̂

(L)
λ

2
. (4)

Note that when λ = 0, Q(γ; 0) reduces to the well-known Wilcoxon rank-sum
statistic, and γ̂0 is the corresponding Hodges-Lemann estimator in the two-sample
case (the median of {(Y1j − Y0j′)}, where Y1j and Y0j′ are observations from the
treatment group and the control group respectively, j = 1, . . . , n1 and j′ =
1, . . . , n0, Randles and Wolfe (1991) pp. 213-23). By a two-sample U-statistic
theorem, n1/2Q(γ0 ;λ) is asymptotically distributed as N(0, σQ,λ

2), where

σQ,λ
2 = σ0

2 − 2λT η + λT Λλ,

(n2 − 1)σ0
2/12 is the variance for Ri(γ0), (n2 − 1)Λ/12 and (n2 − 1)η/12 are the

covariance matrix of Ci = (Ci,1, . . . , Ci,p)T and the covariance between Ci and
Ri(γ0) respectively. The following inequality (5) gives the asymptotic distribution
of γ̂λ based on the estimating equation Q(γ;λ). For any constant a,

prγ{Q(a;λ) < 0} ≤ prγ(γ̂λ < a) ≤ prγ{Q(a;λ) ≤ 0}, (5)

where prγ(·) denotes the probability under γ. Let ξ(γ) = E(Q(γ;λ)). Then
based on (5), we have that n1/2(γ̂λ − γ0) is asymptotically normal with mean
zero and variance 1/KQ,λ

2, where KQ,λ
2 = ξ′(γ0)

2/σQ,λ
2 is the efficacy of the

test based on Q(γ;λ). We provide the proof for (5) and the above result in the
Appendix.
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Since Q(γ;λ) is monotone in γ, a 95% confidence interval for γ0 can be
constructed by finding the roots of Q(γ;λ) such that Q(λ̂L;λ) = −1.96σ̂Q,λ and
Q(γ̂U ;λ) = 1.96σ̂Q,λ respectively. Further, the efficacy of Q(γ; 0) is ξ′(γ0)

2/σ2
0 .

Theorefore, taking the optimal weight τ = Λ−1η of λ, we see that the asymptotic
relative efficiency of γ̂τ with respect to γ̂0 is

ARE(γ̂τ , γ̂0) =
eff(Q(γ̂τ ; τ))
eff(Q(γ̂0 ; 0))

=
σ0

2

σ0
2 − ηT Λ−1η

=
1

1 − RS
2 , (6)

where Rs is the multiple Spearman correlation coefficient between Y and X

(Quade (1967)). In summary, by adjusting for the ranks of X, the propsed
estimator improves the efficiency over the Hodges-Lemann estimator by a factor
of 1/(1 − RS

2) when Z and X are independent.

3. Regression Coefficient for the Partial Spline Model with Mono-
tonicity

We extend the results of the previous section to the one-sample case where
Z is a d-dimensional vector of covariables. That is, we estimate the regression
parameters γ of the partial spline model (1).

For a correctly specified coefficient γ0 , the adjusted ranks of Yi − γT
0

Zi will
be independent of Zi, i = 1, . . . , n. Then, a reasonable estimate for γ0 would be
the solution of the following estimating equation:

Qn(γ;λ) = n−5/2
∑

i

∑
j

(Zi − Zj){(Rj(γ) − Ri(γ)) − λT (Cj − Ci)} = 0, (7)

where Ri(γ) is the rank of Yi − γT Zi, and Ci is the vector of the component-wise
ranks of Xi, i = 1, . . . , n.

As in the two-sample case, the statistic Qn(γ;λ) is not continuous in γ and a
generalized solution is required. In view of Ritov (1987), Qn(γ;λ) is a monotone
nondecreasing field, since for any γ, ξ ∈ Rd, ξT Qn(γ + vξ;λ) is a monotone
nondecreasing function of the real variable v.

Let Qn = (Qn,1, . . . , Qn,d)T . For the kth component γk of γ, the value of
Qn,k(γ;λ) is invariant to the other components γl, k �= l. Therefore we can take
γ̂λ,k to be the average of sup{γk : Qn,k(γ;λ) > 0} and inf{γk : Qn,k(γ;λ) < 0}.
Then γ̂λ = (γ̂λ,1, . . . , γ̂λ,d)T is a generalized solution of Q(γ;λ) = 0. Furthermore,
n−1/2Qn(γ;λ) is asymptotically equivalent to a U-statistic U(γ;λ) of order 2 with
a symmetric kernel

h{(Y1, Z1,X1), (Y2, Z2,X2)}
= (Z1 − Z2)[sgn{Y2 − Y1 − γT (Z2 − Z1)} −

∑
l

λlsgn(X2,l − X1,l)]. (8)
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Let A(γ) = 1
2E[h{(Y1, Z1,X1), (Y2, Z2,X2)}] and let V (γ;λ) be the variance for

Qn(γ;λ). Our primary result is the following theorem (the proof is given in the
Appendix).

Theorem 1. Suppose E(‖Z‖2) < ∞ and the density f(·) of ε has a finite first
derivative. Then
(i) For any fixed γ, Qn(γ;λ) is asymptotically N(A(γ), V (γ;λ)), where A(γ) :

Rd → Rd is deterministic and monotone. In particular A(γ0) = 0, and
Qn(γ0 ;λ) is asymptotically distributed as a N(0, V (γ;λ)). The derivative A
of A(·) at γ0 = 0 is invertible.

(ii) n1/2(γ̂λ − γ0) is asymptotically N(0, Ȧ(γ0)
−1V (γ0 ;λ)Ȧ(γ0)

−1T
).

In view of Theorem 1 (ii), the asymptotic variance of γ̂λ is minimized by
taking λ = τ such that minλ V (γ0 ;λ) = V (γ0 ; τ). Similarly, if Λ−1 exists, we have
τ = Λ−1η. Therefore a reasonable estimate for τ would be its sample estimate
τ̂ = (CTC)−1CTR(γ̂0), where R(γ̂0) is the vector of the ranks of Yi − γ̂0

T Zi.
Also, it is clear that the solution γ for Qn(γ;λ) = op(1) is n1/2-consistent. As in
the two-sample case, a (1−α) confidence interval for γ0 can be constructed from
the test statistic Qn(γ0 ;λ) without estimating m(·) and the error density f(·).

4. Partial Spline Model for Censored Data

When the response Y is the minimum of the failure time T and an indepen-
dent censoring time C, take ∆i = I{Ti ≤ Ci}. Then model (1) becomes

Ti = γT Zi + m(Xi) + εi, (9)

and the test statistic becomes

Qn
c(γ;λ) = n−5/2

∑
i

∑
j

(Zi − Zj){(Rj
c(γ) − Ri

c(γ)) − λT (Cj − Ci)}, (10)

where

Ri
c(γ)=

1
2

∑
k

[I{Yi−γTZi−(Yk−γTZk) > 0}∆k−I{Yi−γT Zi−(Yk−γT Zk)<0}∆i]

(11)
is the rank of Yi − γT Zi for censored data, i = 1, . . . , n. The subscript c of the
test statistic and the ranks of the response denote that these are for censored
data. This is the Gehan’s (1965) generalized Wilcoxon rank-sum score in the
pooled sample. Note that if ∆i = 1 for all i, then Ri

c(γ) reduces to Ri(γ), and
the test statistic Qn

c(γ;λ) is the Qn(γ;λ) of the previous section. Furthermore,
we have

Qn
c(γ;λ) = Wn(γ) − n−3/2

∑∑
i<j

(Zi − Zj)
∑

l

λlsgn(X(l)
j − X

(l)
i ) + op(n−1/2),

(12)
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where Wn(γ) is the monotone estimating equation considered by Fygenson and
Ritov (1994). Therefore, Qn

c(γ;λ) is a U-statistic with a symmetrical kernel of
order 2

hc{(Y1, Z1,X1), (Y2, Z2,X2)} = (Z1 − Z2)[∆1I{Y2 − γT Z2 > (Y1 − γT Z1)}
−∆2I{Y1 − γT Z1 > (Y2 − γT Z2)}) −

∑
l

λlsgn(X2,l − X1,l)]. (13)

The expectation for Qn
c is n1/2A(γ), the same as that of Fygenson and Ritov

(1994), and A(γ0) = 0. However the variance of Qn
c is now

V (γ0 ;λ) = σc
2(1 − 2λT ηcσc

−2 + λT Λλσc
−2)Var (Z), (14)

where Var (Ri
c(γ0)) = (n2 − 1)σc

2/12, and Cov (Ri
c(γ0), Ci) = (n2 − 1) − ηc/12.

Therefore the asymptotic relative efficiency of the estimator with respect to
Wn(γ) of Fygenson and Ritov (1994) has the same form as equation (6), with
the Spearman correlation coefficient RS

c based on Gehan’s score instead of the
usual rank of Y .

5. The Case When Z and X are Dependent

So far we have been assuming that the covariables Z and X are indepen-
dent. Although the assumption is reasonable when Z is the group indicator in
a randomized trial, this in general does not hold when Z is continuous in the
one-sample case. When Z and X are dependent, we may adjust Z using the con-
ditional expectation E(Z|X), and treat the resultant covariable Z̃ = Z−E(Z|X)
as independent of X, see Chen (1995). Therefore the technique in the previous
sections will apply by replacing Z with Z̃, if the resultant model still has the form
of model (1). As a special case assume X is univariate and positively correlated
with each component of Zi, and that each component of γ is positive. Then we
have

Yi = γT Zi +m(Xi)+ εi = γT Z̃i +m(Xi)+γT E(Zi|Xi)+ εi = γT Z̃i + m̃(Xi)+ εi,

(15)
i = 1, . . . , n. In fact when X is a p-dimensional vector, as long as γT E(Z|X)
has the same direction of change as that of m(X) or, more generally, m̃(X) =
m(X) + γT E(Z|X) remains component-wise monotone in X, the results in the
previous sections apply.

6. Simulation Studies

We performed two simulation studies. The first compared our method with
that of the semiparametric regression model obtained by ignoring the nonlinear
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function m(·) of model (1). The other compared the performance of our estimate
with those obtained using kernel smoothing (Speckman (1988)) and regression
splines (see, e.g., He and Shi (1996)). The standard deviation (std) is reported
together with the confidence intervals of significance level α = 0.05. One thou-
sand repetitions with a sample size of 100 were generated using SAS/IML. The
average length of the confidence intervals (E|I|) and the coverage percentages
(cova) of the true parameter that fell in the estimated confidence intervals are
also listed.

Case (i). Consider the model

Y i = γZi + βeXi + εi,

where Zi, Xi, and εi are all independent and identically distributed as N(0, 1), i =
1, . . . , n. We summarize the results in Table 1.

Table 1. Comparisons of the proposed estimating method with that of the
semiparametric regression model without censoring and the nonlinear term.

Qn Wn

(γ, β) E(γ̂ − γ0) std E|I| cova E(γ̂ − γ0) std E|I| cova
(1, 1) -0.003 0.117 0.456 93.4% -0.008 0.166 0.649 94.2%
(1, 4) 0.007 0.120 0.480 95.5% -0.005 0.406 1.599 94.7%
(1, 10) -0.002 0.128 0.510 95.1% -0.019 0.872 3.700 95.2%

Note. Wn = n−3/2
∑

i

∑
j(Zi − Zj)I{Yj(γ) > Yi(γ)} is the statistic used by

Fygenson and Ritov (1994) without censored data, Yi(γ) = Yi − γT Zi.

It is clear from Table 1 that the estimating equation Qn adjusting for the
ranks of the covariable X works much better than the equation Wn in terms
of standard deviation and the length of the confidence interval. The improved
relative efficiency is seen to be proportional to the coefficient β (and thus the
variance for m(X)). Similar results should be expected for the right-censored
data case.

Case (ii). Consider the same model as in Case (i), but with Zi = eXi + ei,
Xi ∼ U(−2, 2), εi ∼ χ2(1), and ei ∼ N(0, 1) independent of Xi, i = 1, . . . , n. We
replaced Z with an estimate Z̃ in the statistic Qn, where E(Z|X) was estimated
with nonparametric smoothing using the Epanchinokov kernel with bandwidth
h = 0.2. The estimates were compared with those obtained by kernel smoothing
and with B-splines having knots at X = −1, 0, and 1. The results are summarized
in Table 2.

In Table 2, the standard deviations of our estimates were slightly smaller than
those using kernel and regression splines. This may be because rank estimates
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are insensitive to skewed error distributions (Chen (1997)), whereas the other two
estimates considered here were not. Also, note that the bias of our estimate does
not increase with β. Thus, even when X is univariate the rank estimator can work
better. The superior performance would become clearer were the dimensionality
of X increased.

Table 2. Comparisions of estimates from Qn (ranks) with those by kernel
smoothing and B-splines.

kernel B-splines ranks
(γ, β) bias std bias std bias std
(1, 1) 0.011 0.147 0.013 0.138 0.030 0.128
(1, 4) 0.025 0.158 0.037 0.156 0.028 0.142
(1, 10) 0.069 0.178 0.086 0.198 0.026 0.169

A referee has kindly pointed out that we used a fixed set of knots for the
regression spline in the simulation, which could be sub-optimal as compared
to adaptively chosen knots. This is certainly true. The main purpose here is,
however, to demonstrate that our proposed estimator is competitive with the
existing methods is such cases.

7. Concluding Remarks

We have proposed a class of rank estimating equations for a partial spline
model with a monotonicity constraint in the nonlinear component m(X). We
think this approach has some advantages over the existing spline methods. First,
using the monotonicity of our estimating equations, one can find the correspond-
ing confidence interval of γ by converting the equations without estimating m(X)
or the error distribution F (X). Hence it is computationally simple and stable.
Second, it ensures model monotonicity which can cause technical problems. Fi-
nally, it bypasses the curse of dimensionality problem as well.

As far as efficiency is concerned, we can compare with the Hodges-Lemann
estimator in the two-sample case and with Fygenson and Ritov’s estimator for a
censored regression case by ignoring m(X). The ARE of our estimator is given
in equation (6). Improvement can be substantial when the variance for m(X) is
relatively large, as shown in the simulation studies.

The proposed method still works as long as the term m̃(X) of equation (15)
remains monotone or approximately monotone when Z and X are dependent.
Further research may be required in different situations.
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Appendix

Proof of inequality (5) and the normality of γ̂λ:
Since

γ̂
(L)
λ > a ⇒ Q(a;λ) ⇒ γ̂

(L)
λ ≥ a,

we have
γ̂

(L)
λ < a ⇒ Q(a;λ) ≤ 0.

Similarly,
γ̂

(U)
λ < a ⇒ Q(a;λ) < 0 ⇒ γ̂

(U)
λ ≤ a.

Therefore,

prγ(γ̂(L)
λ < a) ≤ prγ{Q(a;λ) ≤ 0}; prγ{Q(a;λ) < 0} ≤ prγ(γ̂(U)

λ ≤ a).

Now γ̂
(L)
λ ≤ γ̂

(U)
λ and both are continuous, so

γ̂
(U)
λ ≤ a ⇒ γ̂λ < a; γ̂λ < a ⇒ γ̂

(L)
λ < a.

Thus inequality (5) follows. Based on (5), we have for a sequence of alternatives,
γn = γ0 + a/n1/2, and any given constant a,

lim
n→∞prγ0

{n1/2(γ̂λ−γ0)≤a}= lim
n→∞prγ0

{γ̂λ≤γ0 +a/n1/2}= lim
n→∞prγn

{Q(γ0 ;λ)≤0},

and

n1/2Q(γ0 ;λ)=n1/2[Q(γ0 ;λ)−Eγn{Q(γ0 ;λ)}]+n1/2[Eγn{Q(γ0 ;λ)}−Eγn{Q(γn;λ)}],
where Eγn(·) is the expectation under γn. Now, n1/2[Q(γ0 ;λ)−Eγn{Q(γ0 ;λ)}] is
asymptotically normally distributed with mean zero and variance Var(Q(γ0 ;λ)),
and

lim
n→∞n1/2[Eγn{Q(γ0 ;λ)} − Eγn{Q(γn;λ)}] = −aξ′(γ0).

Therefore KQ,λ
2 = ξ′(γ0)

2/Var{Q(γ0 ;λ)}, and the result follows.

Proof of Theorem 1. (i)

Qn(γ;λ) = 2n−5/2
∑∑

i<j

{Zi(Rj(γ) − λT Cj) + Zj(Ri(γ) − λT Ci)}

−2n−5/2(n − 1)
∑

i

Zi{Ri(γ) − λT Ci}

= n−5/2
∑∑

i<j

∑
k

(
Zi[sgn{Yj−Yk−γT (Zj−Zk)}−

∑
l

λlsgn(Xj,l−Xk,l)]
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+Zj[sgn{Yi − Yk − γT (Zi − Zk)} −
∑

l

λlsgn(Xi,l − Xk,l)]
)

−n−5/2(n − 1)
∑

i

∑
j

Zi[sgn{Yi − Yj − γT (Zi − Zj)}

−
∑

l

λlsgn(Xi,l−Xj,l)]

= n−3/2

(
n

2

)
U(γ;λ).

By a standard U-statistic theorem, Qn(γ;λ) is asymptotically normally dis-
tributed. Now, in the neighborhood of γ0 ,

A(γ)=
1
2
E[(Z1 − Z2)sgn{Y2 − Y1 + γT (Z1 − Z2)}]

=
1
2
E[(Z1−Z2)(Z1−Z2)T

∫
f{u−m(X2)+m(X1)}f(u)du](γ−γ0)+o(‖γ−γ0‖)

=E[
∫

f{u − m(X2) + m(X1)}f(u)du]Var (Z)(γ − γ0),+o(‖γ − γ0‖),

where f(·) the marginal p.d.f. of the model error ε. When γ = γ0 , Yi(γ0) =
Yi − γT

0
Zi is independent of Zi, i = 1, . . . , n. Therefore A(γ0) = 0, and the

asymptotic variance of Qn(γ;λ) at γ = γ0 is

V (γ0 ;λ) =
(
E[sgn{Y2(γ0) − Y1(γ0)}sgn{Y3(γ0) − Y1(γ0)}]

−2
∑

l

λlE[sgn(X2,l − X1,l)sgn{Y2(γ0) − Y1(γ0)}]

+
∑
k

∑
l

λkλlE{sgn(X2,k − X1,k)sgn(X3,l − X1,l)}
)
Var(Z)

=
1
3
σ2(1 − 2λT ησ−2 + λT Λλσ−2)Var(Z),

where, as before, Var(Ri(γ0)) = (n2 − 1)σ2/12, and Cov(Ri(γ0), Ci) = (n2 −
1)η/12. The asymptotic normality with mean A(γ) and variance V (γ;λ) of
Qn(γ;λ) follows. Also, the matrix derivative

Ȧ(γ0) = E[
∫

f{u − m(X2) + m(X1)}f(u)du]Var(Z)

is positive definite, and thus is invertible.
(ii) From the monotonicity of Qn(γ;λ) and A(γ), we have that for any M < ∞
and v > 0, there are C1, C2 < ∞ such that

pr
{

sup
‖t‖<M

|Qn(γ0 + t/n1/2;λ) − Ȧ(γ0)t| > C1

}
< v,
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and
pr
{

sup
‖t‖<M

Qn(γ0 + t;λ) − n1/2A(γ0 + t)| > C2

}
< v.

That is, the statistic Qn(γ;λ) and the linear approximation of A(γ) are uniformly
convergent on bounded subsets. In addition, since Qn(γ;λ) has finite variance
and Ȧ(γ0) is invertible, the asymptotic normality of γ̂ of the generalized solution
for Qn(γ;λ) = 0 and the variance formula follows from linear approximation
(Brown (1985), Ritov (1987)).

The derivation of (12):

Qn
c(γ;λ) =

1
2
n−5/2

∑
i

∑
j

∑
k

(Zi − Zj)∆k[I{Yj − γT Zj − (Yk − γT Zk) > 0}

−I{Yi − γT Zi − (Yk − γT Zk) > 0}]
−1

2
n−5/2

∑
i

∑
j

∑
k

(Zi − Zj)[∆jI{Yj − γT Zj − (Yk − γT Zk) < 0}

−∆iI{Yi − γT Zi − (Yk − γT Zk) < 0}]
−1

2
n−5/2

∑
i

∑
j

∑
k

(Zi−Zj)
∑

l

λl{sgn(Xj,l−Xk,l)−sgn(Xi,l−Xk,l)}

= n−3/2
∑∑

i<j

(Zj − Zj)[∆iI{Yj − γT Zj > (Yi − γT Zi)}

−∆jI{Yi − γT Zi > (Yj − γT Zj)}]
−n−3/2

∑∑
i<j

(Zi − Zj)
∑

l

λlsgn(Xj,l − Xi,l) + op(n−1/2),

and (12) follows.
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